
Latent Patterns in Activities: A Field Study of How
Developers Manage Context

Souti Chattopadhyay∗, Nicholas Nelson∗, Yenifer Ramirez Gonzalez∗, Annel Amelia Leon∗,
Rahul Pandita† and Anita Sarma∗

∗Oregon State University, Corvallis, OR, USA †Phase Change Software, Golden, CO, USA
{chattops, nelsonni, ramireye, leonan}@oregonstate.edu, rpandita@phasechange.ai, anita.sarma@oregonstate.edu

Abstract—In order to build efficient tools that support com-
plex programming tasks, it is imperative that we understand
how developers program. We know that developers create a
context around their programming task by gathering relevant
information. We also know that developers decompose their tasks
recursively into smaller units. However, important gaps exist in
our knowledge about: (1) the role that context plays in supporting
smaller units of tasks, (2) the relationship that exists among
these smaller units, and (3) how context flows across them. The
goal of this research is to gain a better understanding of how
developers structure their tasks and manage context through a
field study of ten professional developers in an industrial setting.
Our analysis reveals that developers decompose their tasks into
smaller units with distinct goals, that specific patterns exist in
how they sequence these smaller units, and that developers may
maintain context between those smaller units with related goals.

Index Terms—context, task decomposition, field study

I. INTRODUCTION

Programming is a creative endeavor in which developers
engage in different types of closely-related activities to com-
plete a development task. They explore different solutions [1],
review past versions [2], and backtrack [3]. We need to
know how these activities relate, interleave, and build upon
each other to truly understand how developers work. This is
essential if we wish to build tools that seamlessly support all
the different programming activities.

Studying developer activity has been a topic of research
for decades. As early as 1984 Vorburgh et al. studied pro-
gramming environments, identifying 14 factors influencing
team productivity [4]. More recently Ko et al. studied the
information needs of developers [5] and Meyer et al. studied
how developers’ work habits correspond with their perceptions
of productivity [6].

From the collected work, two key observations emerge that
are pertinent to the research questions explored in this paper.

First, developers work in short bursts of activities. Gonzalez
and Mark [7] and Meyer et. al. [6] found that developers
organized their development tasks into smaller, basic units of
work.

Second, as developers work they create a context that drives
their development activities. This context encompasses rele-
vant information needed to complete the development task [8].
For example, in order to fix a bug, a developer needs to know
about the bug (from its description in the issue tracker), how
to replicate the bug (discussion snippet in the issue tracker),

what the code currently does (lines of source code), and so
on. All these information elements together create the context
of this bug-fix task.

These two observations have motivated several lines of
research. Researchers have built tools to recommend the
project artifacts that are relevant to a developer’s task [9]–
[11]. Other work has looked further into how developers
“recursively decompose a development task into a hierarchy of
subtasks” [12]. Additionally, researchers have investigated how
developers’ working style across subtasks correspond with
their perception of productivity [6], and how productive devel-
opers’ differentiate themselves based on how they decompose
their testing tasks [13].

Despite all this work, important gaps still remain in our
understanding of how developers go about solving complex
programming tasks. Specifically, while research has identified
the role that context plays in supporting development tasks
and that developers decompose their tasks into smaller units,
open questions remain. What is the relationship among these
smaller units of work? How does context impact smaller units
of tasks? And how does context flow from one unit to another?

While it is useful to study individual smaller units of tasks,
it is equally useful to understand how these units relate to
one another. For instance, do patterns exist in how developers
structure their development tasks into smaller units? And do
these correspond to specific types of development task (e.g,
bug fix, refactoring code, implementation)? And, if patterns
do exist, how does context evolve from one smaller task to
another? Is context tossed away upon the completion of a
smaller task and constructed anew for the next? Is it carried
forward in time?

In this paper, we aim to close this gap by observing
developers in a field study. We observed ten developers at a
software company. We recorded their development activities,
which included interactions with artifacts while working on
their own development tasks, and in their own programming
environment. We conducted a follow-up survey which vali-
dated our findings on how developers decompose tasks and
create context.

This study makes the following observations about devel-
opment behavior:

• Different patterns emerge in how developers organize
their tasks into smaller units.



• Patterns in organization of smaller units depend on the
type of the development task.

• Goals of smaller units are instrumental in creating con-
text, which guides developers’ interactions with artifacts.

• Depending on the relationship between smaller units,
developers maintain (or drop) the context as they shift
between units.

Understanding these development behaviors are fundamental
to tool builders and researchers when building development
environments that better support programming activities.

II. DEFINITIONS

Studies of developer activity require a concrete set of
terminology. In this section, we define key terms through an
example scenario involving Charlie (a programmer).

Goal: The end towards which development effort is directed.
For example, during a normal workday, Charlie has a goal

to refactor a portion of the code base.
Subgoal: Goals are composed of subgoals, which represent

smaller actionable objectives.
For example, to refactor the code base, Charlie can have

subgoals: understand why the code has to be refactored
(Subgoal 1), identify the parts of the code that have to be
refactored (Subgoal 2), and replace old code with new code
(Subgoal 3).

Figure 1 shows an example of a goal that is broken down
into three subgoals. A developer may identify the subgoals
right away, or create them organically as they proceed.

Action: A development effort comprised of steps performed
by a developer towards reaching their subgoal.

For example, to replace old code with new code (Subgoal
3), Charlie may take the following actions: open the class
file A in his editor (navigate), read file A (read), delete old
extraneous sections of code (edit), add new code (edit), and
compile the resulting code (execute). See Table II for specific
definitions of these actions.

Episode: A series of loosely connected actions that are per-
formed continuously one after the other (temporally related)
or performed to complete a subgoal.

For example, the above actions compose an episode guided
by Charlie’s subgoal of replacing old code with new code
(Subgoal 3). This is shown in Episode 4 of Figure 1. Had
Charlie been interrupted or taken other actions related to
another subgoal, the above set of actions would be represented
as two separate episodes.

Context: The information that is used to perform a develop-
ment effort, which includes the artifacts, interactions with the
artifacts (observable), and sensemaking of the artifacts (not
observable).

For example, Charlie reads lines of code (artifact) to un-
derstand where to refactor incorrect pieces of code. The code
artifact and the interaction with that artifact (reading) comprise
the context. Similarly, Charlie may delete the “incorrect”
code before writing new code. Although the artifact remains
the same, different contexts are created based on Charlie’s
sensemaking approach.

Fig. 1: Depiction of a Goal, subgoals, episodes, and actions.

Working Context: The specific context that is required to
complete actions in an episode.

Developers may use parts (or all) of a working context from
a prior episode when executing their actions in the current
episode. For example, Charlie reads a portion of the code and
uses that working context to guide his refactoring of the code.

III. METHODOLOGY

We conducted a field study where we observed ten devel-
opers working on their programming tasks. Each session was
approximately one hour long and included a 15–minute ret-
rospective interview (total observation time: 6 hours, 40 min-
utes). We unobtrusively observed the workspace, computer-
screens, and interactions of each developer following the “fly
on the wall” technique described by Preissle and Grant [14].
We then validated our findings through a follow-up survey, per
guidelines by Easterbrook et al. [15].

A. Study Design

Study participants were recruited from a US-based software
startup. This startup operates in the areas of distributed devel-
oper tools and services, which includes: program analysis, UI,
infrastructure/middleware support, and tool R&D. The variety
of topics allowed for diverse languages and working styles
among our participants. Participants volunteered to take part
in this study and were not compensated.

TABLE I: Study Participant Demographics

Ptc.i Gender Exp.ii Language(s)iii Editoriv

P1 M 21y 0m Java Eclipse
P2 M 1y 11m Clojure Eclipse
P3 M 1y 10m Clojure, Java Emacs
P4 M 7y 3m Clojure, Python Emacs
P5 M 2y 0m Clojure, Java, Haskell Emacs
P6 M 2y 0m TypeScript, Java, Clojure VS Code
P7 M 5y 0m C/C++ Emacs
P8 F 15y 0m JavaScript, CSS VS Code
P9 M 0y 9m C, Prolog Sublime

P10 F 1y 0m Python PyCharm

i Ptc. = Participant ii Exp. = Years/months of software development
experience iii Preferred programming language(s) iv Editor used in session



Table I presents participant demographic details, including
gender, software development experience, their preferred pro-
gramming language(s), and preferred editor. The average was
5 years, 9 months of software development experience.

We observed developers performing their regular develop-
ment tasks on a typical workday. We demonstrated the think-
aloud protocol [16] and requested participants to verbalize
their thoughts and interactions during the session, which we
recorded using two separate microphones for redundancy.
Each session was recorded using screen capture software. Ad-
ditionally, we video recorded participants’ physical workspace
to capture all artifacts (e.g. paper and whiteboard media).

For each session, one researcher was positioned behind the
participant taking in-situ field notes. This researcher noted
information about activities performed by the participant (e.g.
reviewing design notes on paper before writing code in the
editor). An additional researcher was located in a separate
room not visible to the participant. This researcher monitored
the screen and audio recording of the participant to take
secondary field notes. The first and second authors were
responsible for the data collection and alternated between
primary and secondary positions.

Sessions were time-boxed to 45 minutes, which allowed
time to perform a retrospective interview (15–20 minutes).
Longer sessions were not feasible due to time restrictions at
the startup. Sessions stopped when participants completed their
task, which resulted in some sessions being shorter than 45
minutes in duration.

At the end of the session, participants were asked to com-
plete a brief demographic survey (see Table I for responses).
While participants completed the survey, the researchers com-
pared their field notes to identify portions of the session that
were of interest. Clarifying questions about the session were
asked in a 15–minute retrospective interview, which included
replaying portions of the screen capture video in order to
refresh participants’ memory.

B. Data Analysis

After completing all study sessions, the retrospective inter-
views and think-aloud verbalizations were transcribed.

Coding of the transcribed data was performed in three
steps. First, each action was coded by multiple raters and
a high inter-rater reliability (IRR) measures was maintained.
Second, the units of measurement—subgoals and episodes—
were defined through negotiated agreement among the first
four authors using the first half of session data collected from
P4. Third, the patterns were identified by analyzing the units
of measurement across the entire dataset using negotiated
agreement. A detailed description and walk-through of the
coding scheme can be found on our companion site1.

Coding of the session data (screen capture video, transcripts,
and field notes) included: (1) coding the verbalized overall
goal and subgoals within the session, (2) annotating the active
artifacts (i.e. artifacts which participants interacted with), and

1https://sarmaresearch.github.io/ICSE19-LatentPatternsInActivities/

TABLE II: Action Codes

Action Definition

Read Examining information from artifacts (e.g. code,
documentation, terminal output)

Edit Any change made directly to code or related artifacts.

Navigate Moving within or among artifacts (e.g. pulling files from
Git, opening files, scrolling through a file).

Execute Compiling and/or running code.
Ideate Constructing mental model of future changes.

(3) actions taken by the participant. These actions are defined
in Table II.

Two five minute segments of session data collected from P4
were unitized into 24 and 23 actions. The first four authors
individually coded each action with the codes described in
Table II. We calculate inter-rater reliability (IRR) using Fleiss’
Kappa across all four raters. The kappa value was 0.647 (24
instances, 4 raters, p−value < 0.001) and 0.908 (23 instances,
4 raters, p − value < 0.001) in first and second rounds of
coding, respectively.

We identified the subgoals through a combination of coded
actions and verbalizations. Actions were segmented to their
appropriate subgoal based on the timestamp and the thematic
topic of each subgoal. For most segments, the subgoal was
readily discernible from the verbalizations. For example, P4
indicated “I need to create a new entry into this module.”
This verbalization occurred at the same time that P4 switched
from the read action to the edit action, which provided further
evidence of the transition between subgoals.

Additionally, we identified the episodes of actions within
the data by using the actions, subgoals, and relationships be-
tween them. The transitions between episodes were identified
based upon either a change in subgoal, or a period of non-
development activity (e.g. interruptions or taking a break).
For example, P6 mentioned: “Now I am going to move node
methods from the hierarchy service.” In this instance, the
verbalization provided a clear delineation between episodes
based on the described subgoal (moving node methods).

To ensure validity of episode and subgoal coding, the first
four authors incrementally coded the first half of session data
from P4 using negotiated agreement. Negotiated agreement
was used to create a standardized coding scheme and improve
it to an acceptable point where there was no ambiguity in
any of the data points [17]. After reaching agreement, the
first and second authors coded the episodes and subgoals for
participants P1–P4, and the third and fourth authors coded the
data for participants P5–P10.

C. Validation Survey

To validate the patterns of episodes during data analysis,
we conducted a follow-up survey with participants. We were
unable to contact P8 since she had left the company in-between
the study and start of the survey.

The survey consisted of two sets of questions and took about
15 minutes to complete. The full set of survey questions can
be found on our companion site1.



The first set of questions introduced a brief development
scenario and provided participants with a set of information
elements (e.g., Java compile error message indicating reference
error, Java compile error message indicating memory out
of bounds) and multiple software development actions (e.g.,
execute code in a terminal window). Participants had to match
the information elements that they thought were relevant to the
actions based on the description of the scenario.

The second set of questions showed patterns in which
episodes could be arranged, which are described later in
Section IV-B. These patterns were described in text as well as
graphically. Participants had to rank the patterns based on how
frequently they used them, and then provide rationale behind
their most-frequently used and least-frequently used pattern.

D. Limitations of the study

As any field study, our findings are derived from a limited
number of observations regarding the development efforts of
our participants from a single software development com-
pany. However, our participants performed different types
of development tasks, including implementing core program
analysis, server management, web interface development, and
analysis modeling. They also used varied environments such as
feature-rich IDEs (e.g. Eclipse) to advanced code editors (e.g.
Emacs). Our observational study intends to identify patterns
that arise in common software development tasks. Gener-
alizability, although desirable, was not a primary objective
of our study. Instead we aim to present findings that can
be transferred to various environments, providing contextual
support to programmers [18].

While we only observed 10 developers for 45 minutes
each, our primary units of analysis are the 242 episodes and
130 subgoals discovered during these sessions. The inherent
nature of an observational think-aloud study might cause the
data to be affected by the Hawthorne effect, response bias
or create additional cognitive load in participants needing to
think aloud [19]. Such limitations are prevalent in protocol
studies and can be removed in future studies that instrument
a developers’ workspace in the background.

As is the case in any qualitative study, our findings are
subjective to the researchers’ perceptions. We mitigated this
threat through rigor in our analysis process by using four
raters, maintaining inter-rater reliability and using a well
defined coding scheme [20]. We also validated our findings
with the perceptions of the developers through a follow-up
survey.

IV. RESULTS

A. Goal Structuring

RQ1: How do developers structure their software develop-
ment goals?

Developers structure their development goals into episodes
of actions, each of which is driven by a particular subgoal.
We observed 242 episodes driven by 130 distinct subgoals.
Table III presents the individual number of episodes and
subgoals per participant during the study, the duration (in

TABLE III: Goals, Episodes, and Subgoals in Field Study

Participant Goal Type Episodes Subgoals Durationi

P1 Debugging 38 10 0:46:43
P2 Implementing 23 12 0:47:36
P3 Refactoring 24 17 0:46:23
P4 Implementing 15 9 0:43:37
P5 Debugging 37 12 0:30:40
P6 Refactoring 10 8 0:34:06
P7 Refactoring 15 11 0:28:23
P8 Implementing 22 14 0:44:09
P9 Implementing 27 17 0:45:19

P10 Debugging 32 20 0:34:02

Totals 242 130 6:40:58

i Duration of each study session (h:mm:ss)

hh:mm:ss format) of each session, and the goal type for the
session (as verbally indicated by the participant at the start of
each session).

On average study sessions were 40 minutes 6 seconds
long, and included 24.2 episodes driven by 13 subgoals. The
distribution of the episodes and subgoals across goal types
reveal that not all goal types use the same structure.

Participants working on an Implementation goal (four par-
ticipants) had an average study duration of 45 minutes, 10 sec-
onds; with 21.75 episodes driven by 13 subgoals. The average
time spent per episode was 2 minutes 5 seconds, whereas the
average time spent per subgoal was 3 minutes 28 seconds.

Participants working on a Refactoring goal (three partici-
pants) had an average study duration of 36 minutes 17 seconds;
with 16.33 episodes driven by 12 subgoals. The average time
spent per episode was 2 minutes 13 seconds, whereas the
average time spent per subgoal was 3 minutes 1 second.

For participants working on a Debugging goal, they devi-
ated from the overall average. There were three participants
working on Debugging goals and the average study duration
was 37 minutes 8 seconds; with 35.67 episodes driven by 14
subgoals. The average time spent per episode was 1 minute
2 seconds, whereas the average time spent per subgoal was
2 minutes 39 seconds.

We found that Debugging goals require shorter, more fre-
quent episodes of actions. Although the overall session was
similar, participants working on a Debugging goal worked
in more episodes when compared to participants working on
an Implementation or Refactoring goal, with 13.92 and 19.34
additional episodes respectively. The average duration of the
episodes for the Debugging goal was also shorter than those
of Implementation or Refactoring goals, 1 minute 2 seconds
and 1 minute 11 seconds shorter respectively.

We hypothesize that debugging requires more cognitive load
per episode of actions. Debugging requires locating the source
of the bug, comprehending the code associated with the bug,
and modifying the code to fix it. Whereas, Implementation and
Refactoring actions rely more on sensemaking and modifying
the code than finding specific parts of faulty code.



Fig. 2: Visual Illustration of Observed Patterns

The average subgoal duration for Debugging was also the
shortest (2 minutes, 39 seconds), whereas Implementation and
Refactoring sub-goals were 49 seconds and 22 seconds longer,
respectively. This indicates that Debugging goals require more
frequent context-switching between subgoals.

Gonzalez et al. [7] found that people spend about 3 minutes
on average per task (which is synonymous with a subgoal
in our study). Our results also show that subgoals last for
3 minutes 5 seconds on average. We additionally find that the
average time per subgoal varies according to the goal type and
that developers purposefully structure their goals in order to
switch between subgoals approximately every 3 minutes.

In summary, we find that, on average, developers structure
their goals into 1.87 episodes that are focused on the same
subgoal for about 3 minutes 5 seconds. The duration and
frequency of these subgoals and episodes vary according to
the goal type.
B. Patterns in Episode Structuring across Subgoals

RQ2: What patterns do developers employ when working
in and across subgoals?

Developers decompose their goals into subgoals, which
drive episodes of actions. We observed that these episodes
occur in patterns that are formed as a developer works through
different subgoals over time.

Our participants structured episodes into five distinct pat-
terns. We observed that participants arranged their episodes in
sequence across different subgoals (Sequential pattern), con-
currently across two subgoals (Concurrent), recursively into
increasingly fine-grained subgoals (Recursive), by revisiting
previous subgoals to reorient (Grounding), or by exploring
two alternate subgoals (Alternating). Figure 2 illustrates each
of these patterns.

1) Sequential Pattern: Developers work in sequential
episodes that span different subgoals. Each subgoal helps
define subsequent subgoals.

Figure 2 (a) illustrates P3 decomposing his refactoring goal
into three sequential subgoals. Towards Subgoal 1, P3 repli-

TABLE IV: Frequency of Pattern Instances

Ptc.i Sequential Concurrent Grounding Recursive Alternate

P1 1 5 4 2 0
P2 2 1 1 1 0
P3 2 0 1 2 0
P4 1 0 2 1 0
P5 0 2 2 0 0
P6 2 0 1 0 0
P7 2 0 1 0 0
P8 3 0 2 0 0
P9 3 0 2 2 2

P10 4 1 3 1 0

Avg.ii 2.00 0.90 1.90 0.90 0.20

i Ptc. = Participant ii Average instances per participant for a given pattern.

cated a method related to the translator property ensuring
that there were no errors in the process. After successfully
completing this subgoal, he replicated several methods related
to the conversion property (Subgoal 2). Finally, he created
a query method to be used in the replicated properties (Subgoal
3). Throughout this sequence, P3 did not return to working on
any prior subgoal.

The Sequential pattern was the most frequent pattern. We
observed 20 instances of this pattern across 9 out of 10
participants (90%). This pattern was typically used during code
experimentation. Table IV provides the frequency of pattern
occurrences per participant.

Developers perceived the Sequential pattern to be useful
and prevalent in their work. 88.9% of validation survey par-
ticipants (8 out of 9) indicated that they use the Sequential
pattern either sometimes or most of the time; see Table V
for individual participant responses. Participants ranked the
Sequential pattern as the most frequently used pattern (avg.
rank: 1.55). P2 indicated:

“Using this pattern makes it easier to decompose



TABLE V: Pattern Validation through Member Checking

Ptc.i
Sequential Concurrent Grounding Recursive Alternate

Frequency Rank Frequency Rank Frequency Rank Frequency Rank Frequency Rank

P1 Sometimes 2 Sometimes 4 Sometimes 3 Most of the time 1 Rarely 5
P2 Sometimes 1 Rarely 5 Sometimes 2 Sometimes 3 Sometimes 4
P3 Sometimes 2 Never 5 Most of the time 1 Rarely 3 Rarely 4
P4 Sometimes 2 Sometimes 3 Most of the time 1 Sometimes 4 Rarely 5
P5 Sometimes 2 Never 5 Rarely 1 Most of the time 3 Rarely 4
P6 Sometimes 1 Rarely 5 Sometimes 2 Sometimes 3 Rarely 4
P7 Sometimes 1 Sometimes 3 Sometimes 4 Sometimes 2 Sometimes 5
P9 Most of the time 1 Most of the time 2 Sometimes 4 Rarely 5 Rarely 3

P10 Rarely 2 Sometimes 5 Most of the time 1 Rarely 4 Sometimes 3

Avg. Sometimes (1.6)ii 1.6 Never (4.1)ii 4.3 Sometimes (2.1)ii 1.9 Sometimes (3.1)ii 3.3 Rarely (4.1)ii 4.0

i Ptc. = Participant ii Frequency responses converted to numerical form for calculating averages (0: Never, 1: Rarely, 2: Sometimes, 3: Most of the time).

complex tasks because previous stages are completed
before moving on to the next.”

2) Grounding Pattern: Developers reorient themselves to
their overarching goal by revisiting a prior subgoal. Grounding
typically involves building and executing code, running tests,
and checking system status; which are all time-intensive
processes.

Figure 2 (b) illustrates P9 evaluating the data format of
a query (Subgoal 1). He then edited the query (Subgoal 2),
and created a method to wrap the output data (Subgoal 3). In
order to ensure that the query was returning data in the correct
format, he grounded himself by revisiting the original query
(return to Subgoal 1). P9 had to recall the previous format of
the query (episode 1) to evaluate whether his implementation
was successful.

The frequency with which participants grounded themselves
varied across participants. Eight participants (80%) grounded
themselves after a single episode. For example, P9 explored
different syntax to implement a sorting algorithm. He built
and executed the code at several points to verify his solution.
These executions represent instances of the Grounding pattern,
which typically occurred when participants iterated through
experimental solutions. We also observed four participants
(40%) working through several episodes before grounding
themselves. In these cases, participants typically grounded
to evaluate their progress, reorient to the overarching goal,
and transition to the next subgoal. For example, P1 grounded
himself after six episodes and said:

“What I wanna try getting next is just to [implement
another minor feature]”

88.8% validation survey responses (8 of 9) indicated that
participants use the Grounding pattern either sometimes or
most of the time. Participants ranked the Grounding pattern
as the second most frequently used pattern (avg. rank: 2.11).

We conclude that when developers work on exploratory
subgoals they evaluate their progress by “grounding”. P4 said:

“[Grounding pattern] allows me to see the results of
each step (like stepping through in a debugger). . . ”

3) Concurrent Pattern: Developers occasionally work con-
currently towards one subgoal, while waiting on a process
relating to a different subgoal (e.g. builds, tests, code reviews).

Based on the relationships between subgoals, we observed
two variations of the Concurrent pattern: independent and
dependent concurrency. Concurrent Independent pattern in-
stances emerge when the two concurrent subgoals are indepen-
dent of each other (i.e. the completion of one subgoal is not
required in order to complete the other subgoal). Concurrent
Dependent pattern instances emerge when the two concurrent
subgoals are dependent upon each other (i.e. a deviation in the
expected behavior of processes in one subgoal require attention
in the other subgoal).

Figure 2 (c) illustrates P5 triggering a build (Subgoal 1).
While waiting for the build to finish, he began searching and
reading documentation about a specific query API (Subgoal 2).
When the build finished with an error notification, he switched
back to the build configuration and made additional changes
and triggered a new build (Subgoal 1). Instead of waiting
for the build, P5 again returned to reading documentation
about the query API (Subgoal 2). This is an occurrence of
the Concurrent Independent pattern. During the study, P5
described this sequence of episodes by saying:

“While this is running, I am going look for the query
slice. . . I haven’t interacted with the query interface
in a couple months so I am going to familiarize
myself with the code.”

By contrast, the Concurrent Dependent pattern is illustrated
in Figure 2 (d), which shows P1 running the tests (Subgoal 1)
and starting to commit all modified files (Subgoal 2) prior to
seeing the test results. Since he was working concurrently, P1
had already committed several files before some of the tests
failed. This forced P1 to halt committing, fix the broken code,
and restart the tests. P1 then had to revert his previous commits
(Subgoal 2), and exclaimed: “Now, I gotta get rid of those
[commits]!” Committing the modified files (Subgoal 2) was
dependent upon the tests passing (Subgoal 1). We observed
nine instances of this pattern across 40% participants (4 out



of 10).
55.6% survey participants (5 out of 9) stated that they use

the Concurrent pattern either sometimes or most of the time.
However, two participants indicated that they never use this
pattern. Participants ranked the Concurrent pattern as the least
frequently used (avg. rank: 4.11).

The episodes directed towards one of the subgoals in
the Concurrent pattern are off-loadable either to computer
processes or other personnel, which might explain the low
frequency with which participants use this pattern.

As P6 said: “[I will use the Concurrent pattern] if one of
my tasks involves a lot of waiting or downtime.” Additionally,
a blocked subgoal can be attributed to coordination issues such
as waiting for a code review, as indicated by P3:

“[I will use the Concurrent pattern] when I have
two subtasks completely unrelated and I’m waiting
for code review in some of them.”

Past work has shown that developers pursue two subgoals
concurrently to increase productivity [6]. We similarly find
that working concurrently on independent subgoals can be
beneficial to a developers’ productivity. However, we see
that working concurrently on dependent subgoals can actually
inhibit productivity and force unwanted context-switches.

4) Recursive Pattern: Developers decompose their current
subgoal into recursively nested subgoals. In this pattern, each
subgoal is dependent upon successive subgoal(s).

Figure 2 (e) illustrates P4 attempting to create a query
function. He initially started to debug the existing query code
(Subgoal 1). After realizing that a helper function was needed
(Subgoal 2), he devised that an appropriate filter function was
needed during implementation. After successfully implement-
ing the filter (Subgoal 3), he retraced back and completed the
helper function (Subgoal 2) and query (Subgoal 1).

60% of participants (6 of 10) used the Recursive pattern.
This pattern typically emerged when developers were working
on a relatively unexplored problem space.

66.7% of validation survey participants (6 out of 9) stated
that they sometimes or most of the time recursively structure
their subgoals. Recursive pattern was perceived as the third
most frequently used pattern (avg. rank: 3.11).

The variation in the participants’ ranking of the Recursive
pattern suggest that the situations in which this pattern can be
used are infrequent or complex. P9 stated:

“. . . I would use it if I was facing a problem that I
anticipate to be very large and complex.”

5) Alternating Pattern: Developers occasionally work si-
multaneously on two or more subgoals that represent al-
ternative solutions to a larger goal. Developers frequently
switch between episodes towards different subgoals. Unlike
the Concurrent pattern, in an Alternating pattern developers
maintain some part of their context toward the active subgoal
at all times.

Figure 2 (f) illustrates P5 exploring two alternate solutions
to a missing dependency error. P5 started implementing the
solution from a forum posting (Subgoal 1), followed by imple-
menting a different solution from another posting (Subgoal 2).

P5 continued switching between the two subgoals, iteratively
completing portions of both solutions and comparing.

We observed two instances of this pattern from one partici-
pant (10%), thus making this pattern the least frequent in our
study.

77.8% of validation survey participants (7 of 9) indicated
that they rarely use the Alternating pattern. Participants also
ranked the Alternating pattern as the least frequently used
pattern (avg. rank: 4.11). The Alternating and Concurrent
patterns share the position of least frequent.

Alternately exploring solutions requires maintaining differ-
ent contexts, as pointed out by P7:

“I use this pattern as a way to consider the context
of a problem across different solutions.”

The Alternating pattern occurred rarely in our study, par-
tially due to the sessions being limited to one overarching goal,
but also likely due to the high perceived costs of maintaining
multiple simultaneous contexts.

To summarize, we observed that developers organize
episodes in different patterns. These patterns have specific
characteristics that enable specific kinds of subgoals. In our
study, we found five distinct patterns used by real-world de-
velopers. These developers structured their individual episodes
into Sequential, Grounded, Concurrent, Alternating, and Re-
cursive patterns for a variety of subgoals.

C. Maintaining Context across Episodes

RQ3: How do developers maintain context across episodes?
The five distinct patterns observed in section IV-B enable

different types of subgoals. Each pattern was associated with
unique artifacts and interaction with these artifacts. These
interaction patterns contribute towards the working context of
the developer. A working context is comprised of episodes,
which are formed as developers gather information and interact
with specific artifacts.

To understand how developers manage working context
throughout their goal, we need to understand how develop-
ers interact with artifacts and how information flows across
episodes. Developers likely gain relevant information through
their interactions with artifacts; creating unique information
flows for each pattern. To confirm our understanding of
information flow across working contexts, we asked validation
survey participants to examine several different scenarios and
identify the relevant information that contributes to individual
actions, episodes, and subgoals. The survey can be accessed
from our companion site.

Figure 3 represents responses to the five survey questions
related to information relevancy and information flow for
specific development patterns. We asked one question per
pattern, using neutral language that avoids biasing responses
towards any particular pattern. Information elements are shown
as colored curved lines; The vertical heights correspond to
the number of participants that perceived that element to be
relevant to a particular action. Actions are shown in time
sequence order along the horizontal axis; denoted as a1 through



a8. Actions are divided into episodes and the borders between
episodes are denoted by grey vertical lines.

1) Sequential Pattern: When developers structure episodes
in the Sequential pattern, consecutive episodes share at least
one artifact. These episodes also involve artifacts that are
unique to an individual episode.

For example, during his session, P3 decomposed a goal
of creating a query interface into three sequential episodes;
each towards a different subgoal. Across these three episodes,
P3 interacted with the query_interface file. All other
artifacts were used in exactly one episode. Such observations
suggest that participants maintain related information across
sequential episodes.

The Sequential pattern (see Figure 3a) shows a gradual
shift in the relevancy of information i.e. information flows
across episodes. Examining the figure further, we see that
participants perceived the information from element 4 (green
line) to be relevant across all four episodes. Other than element
4, every episode had unique information elements perceived to
be relevant to that episode. The peaks of element 1 (red line),
element 2 (purple line), element 3 (blue line) and element 5
(orange line) all show only one rise in relevancy, indicating
that these had fairly localized relevancy that did not span
across the episodes.

Thus, in the Sequential pattern, the working context over-
laps between subsequent episodes. Since each subsequent
episode is towards a new subgoal, some information and
artifacts lose relevancy and are no longer part of the working
context. However, there are also cases where some information
remains in the working context over a longer period (e.g.
element 4 in Figure 3a).

2) Grounding Pattern: When developers work through
many episodes, towards multiple subgoals, they require
grounding in order to reorient themselves to the larger goal.
The Grounding pattern occurs when developers interact with a
different set of artifacts than what is required for their current
subgoal.

Figure 3b shows information that participants found relevant
in three episodes that adhere to the Grounding pattern. The first
(a1 and a2) and last (a6–a8) episodes are instances of “ground-
ing”. The second episode (a3–a5) denotes an implementation
which is then evaluated in the third episode.

We found that, in this case, information is relevant to
individual episodes. The information about the implementation
from the second episode (a3–a5) is no longer relevant once
“grounded”, as shown in the Figure 3b.

In conclusion, in a Grounding pattern a working context
exists temporarily. Once “grounded”, the elements in the
working context are no longer relevant.

3) Concurrent Pattern: Instances of the Concurrent pattern
occur when developers switch between subgoals before com-
pleting processes intended to address earlier subgoal(s). The
Concurrent pattern involves two consecutive episodes that do
not share artifacts (i.e. developers work with two distinct sets
of artifacts).

In the Concurrent pattern example described in Sec-
tion IV-B3, P5 triggered a build (Subgoal 1), and before the
build could complete, he began examining the code structure
of a particular query command (Subgoal 2). In this example,
the artifacts required for each subgoal are distinct and thus
can be “concurrently” managed between episodes.

The Concurrent pattern indicates that information from one
subgoal is irrelevant to the other subgoal. To verify this obser-
vation, we asked participants to identify relevant information
for actions taken across two concurrent subgoals. The example
for the Concurrent pattern provided in the validation survey
had four episodes across two subgoals (shown in Figure 3c).
The first (a1) and third (a3–a5) episodes share the same
subgoal, while the second (a2) and fourth (a6 and a7) episodes
share a different subgoal.

Figure 3c shows element 1 (red line) and element 2 (purple
line) to be relevant for the episodes sharing the first subgoal.
Whereas information for element 3 (blue line), element 4
(green line), and element 5 (orange line) was relevant for the
episodes sharing the second subgoal. The separation between
these distinct sets of information, arising from their particular
subgoals, provides evidence that information flows between
episodes with shared subgoals, and not across episodes with
separate subgoals.

From our observations, two separate working contexts exist
when a developer concurrently works on two distinct subgoals.

4) Recursive Pattern: Developers decompose their sub-
goals recursively into other subgoals. In the Recursive pattern,
each subgoal is associated with the next subgoal and, thus, a
subgoal is likely to tangentially share artifacts across these
subgoals.

For example, P3 structured his task into three recursive
subgoals. However, he interacted with three distinct sets of
artifacts when working towards these subgoals.

Figure 3d shows the five episodes structured into three
recursive subgoals for a scenario with a Recursive pattern.
The first (a1) and the last (a7) episodes share Subgoal 1, the
second (a2) and fourth (a4 and a5) episodes share Subgoal 2,
and the third (a3 and a4) episode was directed towards Subgoal
3. Participants indicated that information element 3 (blue line)
to be highly relevant in Subgoal 1, element 1 (red line) to be
relevant for Subgoal 2, and element 3 (blue line) to be the
most relevant for Subgoal 3.

The figure indicates that information flows symmetrically
around the lowest level of recursive subgoals. In Figure 3d
the axis of symmetry resides at the a4 action, with the first
two episodes (comprising a1 and a2) and the last two episodes
(comprising a6 and a7) residing within their respective halves
of the recursive scenario. Additionally, we see that information
relevancy mirrors across the axis of symmetry with element
1 (red line) and element 3 (blue line) peaking in both halves,
and element 2 (purple line) peaking around the axis.

Based on survey responses, we can conclude that for Re-
cursive subgoals, developers manage distinct working contexts
for each subgoal.



(a) Sequential Pattern (b) Grounding Pattern

(c) Concurrent Pattern (d) Recursive Pattern

(e) Alternating Pattern

Fig. 3: Information Relevancy and Flow for Episode Patterns

5) Alternating Pattern: In this pattern, developers switch
between two subgoals of alternate solutions. Alternating sub-
goals have two distinct sets of artifacts, which combine
together as time moves forward. This suggests that, as devel-
opers progress with comparing alternate solutions, information
gained from episodes targeting one subgoal can be used in
future episodes targeting another subgoal.

For example, P5 tried two alternate solutions to debug
a missing dependency error. For the first few episodes, P5
interacted with separate artifacts for each subgoal. However,
after the fourth episode, P5 used a combined set of all artifacts
when working towards both subgoals.

Figure 3e shows the information our participants perceived
to be relevant across these five episodes that represent the
Alternating pattern. For the first (a1–a2) and third (a4–a5)
episodes, information element 1 (red line) and element 3 (blue
line) were considered more relevant. For the second (a3) and
fourth (a6) episodes, information element 2 (purple line) and
element 5 (orange line) were considered relevant.

In the last episode (a8), participants indicated that a com-
bination of information elements (previously used separately)
were now relevant together. This confirms our observation that,

in an Alternating pattern, information from episodes towards
one subgoal will eventually be used towards another subgoal.
Thus, in an Alternating pattern, developers start with two
separate contexts that eventually combine into a single context.

V. RELATED WORK

A. Task Management

Perry et al. [21] conducted two empirical studies on the
social and organizational processes of developers and found
that developers work in two hour chunks, spending most of
their time on writing code and having unplanned interactions
with colleagues. Perlow [22] conducted a qualitative study of
how software engineers optimally use their time at work. Gon-
zalez and Mark [7] found work fragmentation is a common
phenomena. Our observations also show work fragmentation
among developers, with 242 total distinct work episodes.

Meyer et al. [6], [23] conducted two separate studies to
investigate developers’ daily activities and observed that devel-
opers spend their time on a wide variety of activities, switch-
ing regularly between them, and that they perceive context
switches to be generally harmful to productivity. However,
O’Conaill and Frohlich [24] and Hudson et al. [25] report that



in many cases interruptions can be beneficial and bring rele-
vant information. We find that developers don’t just “switch”
context, they maintain context to various degrees across these
“switches” based on their current subgoal. Information, from
both interactions and interruptions, that developers perceive as
important flow across related episodes.

B. Information Needs & Flow

Many researchers [5], [26], [27] found that developers per-
ceive questions about the rationale and intent of code was diffi-
cult to answer. The majority of questions developers ask relate
to the aggregation of information into and across context. Their
findings show that developers have significant information
needs, which bolsters our research into understanding how
developers manage context in their daily activities.

Sillito et al. [28], [29] conducted two qualitative studies
of programmers’ information needs when performing change
tasks. They found that participants asked lower-level questions
as part of answering higher-level questions. They further
noted that participants sometimes asked linear questions and
other times branched out questions about the same entity. We
observed similar patterns in how developers structure their
subgoals.

C. Context Management
Kersten and Murphy [11] introduce Mylar, a tool which

captures the task context of program elements by monitoring
the programmer’s activity. Gasparic et al. [8] present a context
model that includes thirteen contextual factors (in four main
categories: who, what, where, and when), captured in various
situations to enhance interactions within an IDE.

Fritz et al. [30] introduce a model that capture context
through developers’ authorship and interaction information.
Petcharat and Murphy [31] introduce Spyglass, which suggests
tools to aid program navigation based on the context of their
work. Sedigheh and Murphy [32] captures context through
three factors–discovery patterns, recent command usage, and
elapsed time since last activity. In this paper we investigate the
effect of developer’s intention (of what they want to work on)
on how they maintain context. We hypothesize that intention
and interaction plays equally important roles when modelling
context.

VI. CONCLUSION AND DISCUSSIONS

Our results show that individuals organize their develop-
ment efforts into a series of episodes, which form different
patterns. We found five such patterns: Sequential, Grounding,
Concurrent, Recursive, and Alternating.

Studying context at a smaller granularity (the subgoal level)
is important as development efforts typically occurred at the
episode level. Furthermore, work thus far typically addresses
how and when developers perform context switches when
working across tasks, and their associated cognitive loads [8].
We are the first to observe how context (and portions thereof)
is maintained when developers move from one episode to
another.

1) Implications for Researchers: We found that patterns
in episodes are associated with the type of development
task. For example, debugging tasks were “fast and furious”,
involved shorter episodes and more switching across subgoals.
In contrast, developers were much more deliberate when
implementing or refactoring, resulting in longer episodes and
less frequent switches between subgoals.

Further research is needed to understand the role of the
environment or programming language in task decomposition.
While this was not our focus, our survey alludes to this: P1
(working in Java) stated that he “often” performs recursive
tasks and ranked Recursive as his most frequent pattern.

Task decomposition may also depend on individual differ-
ences in problem solving styles [33]. For example, tinkerers
who typically operate in small increments are likely to leverage
the Grounding pattern, whereas planners are more likely to
leverage the Sequential pattern where they comprehensively
process all information needed to solve a task and then decom-
pose it methodically into smaltler, organized subgoals. Further
studies will allow us to better understand these differences and
design tools that are inclusive to all problem solving styles.

We used the participants’ verbalizations to identify when
subgoals changed. While this worked well for our quali-
tative analysis, an automated approach that identifies such
boundaries will help in larger studies as well as building
developer tools. We plan to experiment with machine learning
and natural language processing techniques to automatically
identify subgoal boundaries.

2) Implications for Tool Builders: Modern recommenda-
tion tools [9]–[11] typically leverage the relationships between
artifacts to recommend other relevant artifacts. Our results
indicate that episode patterns impact which artifacts are con-
sidered relevant for the current subgoal. For instance, in the
Sequential pattern, an artifact was consistently used across all
episodes. In contrast, in the Recursive pattern, artifacts lost
and then gained relevance when developers switched between
subgoals. Leveraging this correspondence between patterns
and artifact relevancy can help improve context-aware artifact
recommendations.

Another area of tool improvement is interruption manage-
ment. Development of tools like FlowLight [34] operational-
izes the notion of interruptibility of a developer by using a
physical indicator to signal when they are busy. However, such
tools either encode interruptibility as a function of time or
some physical aspect of developer interaction such as typing
speed. In contrast, the end of an episode or a subgoal is likely a
better indicator of interruptibility. This nuanced understanding
of episode patterns and subgoal structures provide further
opportunities to improve interruption notification.

ACKNOWLEDGEMENT

We thank our participants for their time, André van der
Hoek for his timely suggestions, and the reviewers for their
feedback. We also thank Phase Change for their cooperation.
This work was funded by NSF 1559657 and 1560526.



REFERENCES

[1] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on software
engineering, vol. 32, no. 12, pp. 971–987, 2006.

[2] S. Srinivasa Ragavan, S. K. Kuttal, C. Hill, A. Sarma, D. Piorkowski,
and M. Burnett, “Foraging among an overabundance of similar variants,”
in Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, ser. CHI ’16. New York, NY, USA: ACM, 2016,
pp. 3509–3521.

[3] Y. Yoon and B. A. Myers, “An exploratory study of backtracking
strategies used by developers,” in Proceedings of the 5th International
Workshop on Co-operative and Human Aspects of Software Engineering.
IEEE Press, 2012, pp. 138–144.

[4] J. Vosburgh, B. Curtis, R. Wolverton, B. Albert, H. Malec, S. Hoben,
and Y. Liu, “Productivity factors and programming environments,” in
Proceedings of the 7th international conference on Software engineering.
IEEE Press, 1984, pp. 143–152.

[5] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proceedings of the 29th international
conference on Software Engineering. IEEE Computer Society, 2007,
pp. 344–353.

[6] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Software
developers’ perceptions of productivity,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 19–29.

[7] V. M. González and G. Mark, “Constant, constant, multi-tasking
craziness: managing multiple working spheres,” in Proceedings of the
SIGCHI conference on Human factors in computing systems. ACM,
2004, pp. 113–120.

[8] M. Gasparic, G. C. Murphy, and F. Ricci, “A context model for ide-
based recommendation systems,” Journal of Systems and Software, vol.
128, pp. 200–219, 2017.

[9] D. Čubranić and G. C. Murphy, “Hipikat: Recommending pertinent
software development artifacts,” in Proceedings of the 25th International
Conference on Software Engineering, ser. ICSE ’03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 408–418.

[10] M. Kersten and G. C. Murphy, “Using task context to improve pro-
grammer productivity,” in Proceedings of the 14th ACM SIGSOFT in-
ternational symposium on Foundations of software engineering. ACM,
2006, pp. 1–11.

[11] M. Kersten and G. Murphy, “Mylar: a degree-of-interest model for
IDEs,” in Proceedings of the 4th international conference on Aspect-
oriented software development. ACM, 2005, pp. 159–168.

[12] N. Souchon, Q. Limbourg, and J. Vanderdonckt, “Task modelling
in multiple contexts of use,” in International Workshop on Design,
Specification, and Verification of Interactive Systems. Springer, 2002,
pp. 59–73.

[13] D. Kamma and P. Jalote, “High productivity programmers use effective
task processes in unit-testing,” in APSEC. IEEE Computer Society,
2015, pp. 32–39.

[14] J. Preissle and L. Grant, “Fieldwork traditions: Ethnography and par-
ticipant observation,” Foundations for research: Methods of inquiry in
education and the social sciences, pp. 161–180, 2004.

[15] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to
advanced empirical software engineering. Springer, 2008, pp. 285–
311.

[16] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, p. 131, 2009.

[17] D. R. Garrison, M. Cleveland-Innes, M. Koole, and J. Kappelman,
“Revisiting methodological issues in transcript analysis: Negotiated
coding and reliability,” The Internet and Higher Education, vol. 9, no. 1,
pp. 1–8, 2006.

[18] A. S. Lee and R. L. Baskerville, “Generalizing generalizability in
information systems research,” Info. Sys. Research, vol. 14, no. 3, pp.
221–243, Sep. 2003.

[19] S. Xu and V. Rajlich, “Dialog-based protocol: an empirical research
method for cognitive activities in software engineering,” in 2005 In-
ternational Symposium on Empirical Software Engineering, 2005., Nov
2005.

[20] S. J. Tracy, “Qualitative quality: Eight “big-tent” criteria for excellent
qualitative research,” Qualitative Inquiry, vol. 16, no. 10, pp. 837–851,
2010.

[21] D. E. Perry, N. A. Staudenmayer, and L. G. Votta, “People, organiza-
tions, and process improvement,” IEEE Software, vol. 11, no. 4, pp.
36–45, 1994.

[22] L. A. Perlow, “The time famine: Toward a sociology of work time,”
Administrative science quarterly, vol. 44, no. 1, pp. 57–81, 1999.

[23] A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zimmermann, and
T. Fritz, “The work life of developers: Activities, switches and perceived
productivity,” IEEE Transactions on Software Engineering, vol. 43,
no. 12, pp. 1178–1193, 2017.

[24] B. O’Conaill and D. Frohlich, “Timespace in the workplace: Dealing
with interruptions,” in Conference companion on Human factors in
computing systems. ACM, 1995, pp. 262–263.

[25] J. M. Hudson, J. Christensen, W. A. Kellogg, and T. Erickson, “I’d
be overwhelmed, but it’s just one more thing to do: Availability and
interruption in research management,” in Proceedings of the SIGCHI
Conference on Human factors in computing systems. ACM, 2002, pp.
97–104.

[26] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code,”
in Evaluation and Usability of Programming Languages and Tools.
ACM, 2010, p. 8.

[27] T. Fritz and G. Murphy, “Using information fragments to answer the
questions developers ask,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1. ACM,
2010, pp. 175–184.

[28] J. Sillito, G. Murphy, and K. De Volder, “Questions programmers ask
during software evolution tasks,” in Proceedings of the 14th ACM SIG-
SOFT international symposium on Foundations of software engineering.
ACM, 2006, pp. 23–34.

[29] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 434–451, 2008.

[30] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill, “A degree-of-
knowledge model to capture source code familiarity,” in Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1. ACM, 2010, pp. 385–394.

[31] P. Viriyakattiyaporn and G. C. Murphy, “Improving program navigation
with an active help system,” in Proceedings of the 2010 Conference
of the Center for Advanced Studies on Collaborative Research. IBM
Corp., 2010, pp. 27–41.

[32] S. Zolaktaf and G. C. Murphy, “What to learn next: Recommending
commands in a feature-rich environment,” in Machine Learning and
Applications (ICMLA), 2015 IEEE 14th International Conference on.
IEEE, 2015, pp. 1038–1044.

[33] M. Burnett, S. Stumpf, J. Macbeth, S. Makri, L. Beckwith, I. Kwan,
A. Peters, and W. Jernigan, “Gendermag: A method for evaluating
software’s gender inclusiveness,” Interacting with Computers, vol. 28,
no. 6, pp. 760–787, 2016.

[34] M. Züger, C. Corley, A. N. Meyer, B. Li, T. Fritz, D. Shepherd, V. Au-
gustine, P. Francis, N. Kraft, and W. Snipes, “Reducing interruptions
at work: A large-scale field study of flowlight,” in Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems. ACM,
2017, pp. 61–72.


