
Myself

2-5 team members

6-10 team members

11-25 team members

26-50 team members

51+ team members

Informed Consent Block

Thank you for participating in the survey.  We expect that this survey will take 5 minutes of
your time. 
 
Who we are:
Researchers at Oregon State University
 
Our Goal:
This survey is part of a research study to examine how developers resolve merge conflicts.
Our goal is that by understanding the difficulties, we can ultimately help improve research
and tool support in this area.
 
Please proceed to the next page to begin.

Demographics Block

What is your programming experience (including professional experience)?

What is the size of your primary team?

  Year(s)

 0 5 10 15 20 25 30 35 40 45 50

1 of 5



Developer

Engineer

Architect

DevOps

Designer

Data Scientist

Chief Technology Officer

Other:

Yes

Sometimes

No

What is your primary role?

Awareness Phase

The following questions are about how you (and your team) become aware of merge conflicts.

Do you monitor for merge conflicts?

How do you monitor for merge conflicts? (Please list processes and tools that you use)

How do you determine the urgency of a merge conflict?

Planning Phase

The following questions are about how you approach resolving a merge conflict.

2 of 5



Always

Most of the time

About half the time

Sometimes

Never

Yes

No

Size of the conflicting code

Complexity of the conflicting code

Number of conflicting code locations

Ownership of the conflicting code

Work schedule constraints

Approaching deadlines

Other:

How often is code ownership a factor in your merge conflict resolution strategy?

What is your first step in trying to understand code involved in a merge conflict?

Have you ever deferred responding to a merge conflict?

What factor(s) determine whether you defer responding to a merge conflict?

What effect did deferring your response to a merge conflict have on the resolution of the
conflict?

Evaluation Phase

3 of 5



All tests pass

Code successfully compiles

Version Control System (VCS) warnings are gone

Merged code is accepted into production codebase

Code looks correct (i.e. visual test passes)

Merged code is approved during code review

Other:

Version Control Systems (e.g. Git, Subversion, CVS)

Release Management Tools (e.g. Chef, Puppet, Salt)

Continuous Integration (e.g. TravisCI, Jenkins, TFS)

DevOps Tools (e.g. Nagios, Monit, Kabana)

Program Analysis Tools (e.g. Coverity, CodeSonar, Roslyn)

Other:

Very frequently

Somewhat frequently

Occasionally

Somewhat infrequently

Very infrequently

The following questions are about how you evaluate whether your merge conflict resolution
succeeded.

What condition(s) do you consider to be a successful merge conflict resolution?

What tools do you use to evaluate the results of performing a merge conflict resolution?

How often does your first attempt at resolving a merge conflict fail?

If your first attempt at resolving a merge conflict fails, what backup strategies do you use?

4 of 5



5 of 5


