
PROCESSES SURVEY CODEBOOK 

Q7​: How do you monitor for merge conflicts? 

Code Rule Example 

Proactive The developer monitors the repository for commits that 
might lead to a merge conflict with their own changes 

“​[...] a feed plugin on my desktop 
which notifies me about commits 
on branches that I'm monitoring (I 
look for commits that might be 
troublesome when we integrate 
branches)​” 

Reactive The developer does not monitor for merge conflicts, or 
uses a process that only alerts them once a merge 
conflict has occurred 

“​Github lets us know if a PR will 
cause a merge conflict” 

Q8​: How do you determine the urgency of a merge conflict? 

Code Rule Example 

Project Structure What part of the code is affected by the conflict 
determines the merge conflict 

“​depends on the tests that are 
breaking, but core modules take 
precedence [...]” 

Code Under Conflict The code that is conflicting, as well with it’s intent 
(bug fix, feature, etc) is used to determine urgency 

“Reading the code allows me to 
know what went wrong [...]” 

External 
dependencies 

The urgency is dependent on the feature, fix or 
story that is impacted by the conflict. 

“Based on the severity of the open 
issue associated with a particular 
patch or branch update.” 

No system The develop has no system to differentiate 
between conflicts; all conflicts are equally urgent 

“All merge conflicts are considered 
to be urgent and to be resolved as 
soon as possible.” 

Q11​: What is your first step in trying to understand code involved in a merge 
conflict? 

Code Rule Example 

About the conflict The developer starts by looking at the history of 
the changes that generated the conflict. 

“​Reviewing the most recent 
commits (comments and code) to 
see whether its a shallow conflict or 
not.” 

The code itself The developer starts by analyzing the code that is 
conflicting 

“Reading code involved” 



Analyzing the code Looking at the larger picture; starting by seeing 
what part of the system is affected 

“​Checking out that branch and 
running the tests to see which parts 
of the code are breaking” 

Design Concerns The developer first tries to understand the design 
and intent of the code, before attempting a 
resolution. 

“Pull up related design docs to 
know what the code *should* be 
doing” 

Project Organization The developer looks at the work that is done on 
the system/module before attempting a 
resolution 

“​Opening all associated issues in 
Lighthouse to see where things are 
at.” 

No-op The developer that not have a solidified process. “Don't know” 

Q14​: What effect did deferring your response to a merge conflict have on the 
resolution of the conflict? 

Code Rule Example 

Physical 
Manifestation 

The developer reported physical discomfort “Gave me a headache!” 

External to company 
impact 

The effects were visible by customers due to a 
disruption of service 

“Broke the app for customers [...]” 

Policy/cultural 
changes 

Policy or cultural changes were required because 
of the consequences 

“​Weekly reviews were less 
efficient because we had to 
spend time discussing the 
conflict before resolving.” 

The Nuclear Option The developers have to scrap the changes, and 
start again, because resolving the conflict was too 
complicated 

“KABOOM! [...] Nothing to do but 
wipe it all back to clean and start 
trying to piece things back 
together.” 

Increased 
Complexity 

The deferral resulted in increased merge conflict 
complexity 

“The resolution becomes a 
spaghetti nightmare if we try to 
move forward without addressing 
it” 

Stop the presses The developer process is stopped or slowed down 
until the conflict can be resolved 

“Delayed merging development 
lines until after we could get the 
dev team together to design a 
solution to the conflict zones.” 

No-op No effects were observed “Open source is volunteer [sic] and 
no consequences for having to wait 
for fixes to come in” 



Q19​: If your first attempt at resolving a merge conflict fails, what backup 
strategies do you use? 

Code Rule Example 

Collaborating The developer collaborated with the other 
authors of the conflicting code to resolve the 
conflict. 

“Working directly with the author 
or team that last modified the area 
in conflict” 

Redoing changes The developer reimplements their changes “Throwing away the code and 
starting again.” 

Take it offline The developer tries to reorder the commits, in 
order to avoid the conflict 

“Rebase and reorder to fix the little 
bugs in how git trying to merge.” 

Try again The developer tries the same strategy they used 
the first time 

“first attempt more carefully” 

No clue/other Invalid responses “Not sure.” 

 






